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1. INTRODUCTION 
.

Let X be a compact subset of the real line and denote by C(X)

the class of all real valued continuous functions defined on X. Norm

C(X~ with the uniform norm, i.e. for all f c C(X) ,

h f  II max(lf (x ) l: x C X). Let n be a positive integer and set

R~(iQ — (lip: p c 11~, p(x) > 0, Vx c x} where II denotes the set of all

real algebraic polynomials of degree � n. Note that R~ (X )  consists of the
- 0

positive elements of the ~s~e~l set Adenoted by R~(X).

• In this paper, we shall study the problem of approximation of positive

functions in C(X) by elements of R~(X). The emphasis of this study is as follows.

First , we wish to contrast this setting with that of approximation by elements
in . .of R~ ( X ) .  m ‘ 1, n > 1, in C (X ) .  Basically , there is one major difference ,

namely that existence holds for this case; whereas, this is not true for

Rm (X ) ,  m > 1, n > 1 and X not an interval. In addition, when X is not an

interval the proof of existence is very long and tedious. Next, we shall

observe that the usual characterization (alternation) and uniqueness results

hold for this problem using the standard arguments. Finally, we shall discuss

the computation of best approximations from R~(X).

These results will be used in a forthcoming paper on uniform approximation

on [0, “) with reciprocals of polynomials. See ([2], [3), [ii], [8), [ ] . U ]  and [18])

for various recent studies concerning certain aspects of this problem. Since

we are interested in applying these results to this setting, we shall approximate

1/f in what follows.
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2. E~~STENCE 
.

I -j
As noted in the introduction , it is well known that best rational

approxisants from R (X), in ~ 1, n ~ 1 and X not an interval need not

exist. Indeed, let X be a finite subset of [0,1], such that 0 c X

and card(X~ � n + in + 2. Define f c C(X) Rm(X) by f(O) = 1 and

f(x) — 2 for x c X (0). Let rk(x) be defined by 
~~~~ 

—

Then l I inhI f  — rkhI = 0 showing that no best approximation exists for

f from R (X).

In what follows, let n be a nonnegative integer and let X be a

compact subset of [O,BJ, B > 0 with card(X) � a + 2. Set

K — (p c ff~: p(x) > 0, Yx c X}, let f C C(X), f j K with f(x) > 0

for all X C  X and set A — inf{hl+ _ uIt : p c  K). We have the follow—

ing lemma.

LEMMA 1. Let X, f, A be as defined above. Then A > 0.

Proof. Suppose A — 0. Then, setting — , c a constant,

q E K, kit — 1, there is a sequence of polynomials {q~) c K such

that 1 � 
t t3  

— 

~ II • 0. Since ic~h � 1 + , in — min(if(x)h: x c X),

we may ass~mie that c~ + c~ � 0 and + q* uniformly, with • q* c U

• — 1. . We claim that c~ > 0. Suppose c~ — 0, and let

~1



-

~~~~~

x ~ X be such tha t q*(x) > 0 (such an x exists since q* / 0 and

card(X) � n+2) . Then we have

1 1 0 lim 1 
C lim l C

0 < 
f (x) 

— 
f ( x) 

— 

q*(x) 
— 

w~~ f ( x) 
— 

q~ (x) ~~ ~~~
a. 

— 
~~~~~~ i — 0 which

• is a contradiction. Hence c~ > 0. Since I I~ h I � 1 + I i3i I we have

C * 
-

that q*(x) > 0 for all x c X. Thus —
~~~ ~ £ K uniformly andq~~~~ q

I i3 — 

~ i I — 

~~ I~ 
— 

~ I I — 0, hence f — c K , which is a contra-

diction . Therefore A > 0.

THEOREM 1. Let n be a nonnegative integer and let X, K, f and

A be defined as above. Then there exists a p~ C K such that

ii 1
— A .

Proof. Since I is compact , f > 0 on X, there exist positive

constants in, N such that in � N for all x £ X. For p £ K
f (x)

we write — 
~~~

. where q(x) > 0 for all X C X, c > 0 and I lcd I — 1.

Then as in Lemma 1, there exist sequences {c~}, (q~) such that c~ > 0

for all n, q1~(x) > 0 for all x c X with lt q~I l — 1 satisfying

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .•~~~~~~~~ -- - --~~~~ ~~~~~~~•
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i) 1 + A �  II ~ —~~l I

ii) — A

iii) 1c~I � l + A + M .

~ 

By extracting subsequences (c~~) and (ci ) of ( c i  and {q~}

respectively, there exists c~ � 0 and q* C with q*(x) � 0 for all

( x c I and 1~q~ 1 1 — 1 such that c -~~ c~’ and q~ (x) 
-~ q*(x)

- - - - V

- 

. unifoxinly in I.

We now claim that c~ > 0. Indeed, suppose c~ — 0 and let

z — (xl,...,xk
} ~ X, k s a, be all the zeros of q* contained in X.

Now, if - Z — 0, then q*(x) > 0 for all x C I holds and we have for

each X C X  
-

C - C
1 1 0 1 

______ 
1

f(x) — f(x) — 

q*(x) 
— 

~~~~~~~ f ( x) 
— 

% (x) � liin .

~~~ 
— — — A.  (1)

Thus, taking p — , the inequality

— 
1 

— f~x) 
— 41 � 4 holds for each x c X. Since p £ K,

p (x)

this contradicts our assumption that inf {~ I3 — !l I :  p c K} — A > 0.
pelt

a

Therefore , we assume that Z # 0. Partition Z in to two subsets

L - ~~~~~~~~~~~~~~~~~~~~~~ 
-• -~~ 

• • -  -
~~~~

-•- • — -
~~~~~~ .— -

~~~~~~~~~~
- • • . ••-  

~~~~~- -— - — - - - -
~~~~~~~~~ 
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Z — I U J where I — (x c Z:x is an isolated point of xl , and

J — Z — I. Now , for x C X — Z we have that q*(x) > 0 so fix) �

holds by (1). Also, since f C C(X) and y C J implies that y is a

limit point of X Z we have, by continuity, that f~y) 
� A holds .

Now , if I = 0, then our argument for the case Z = 0 yields our

desired contradiction. F nee, let us assume that

I — ~y1 
< ‘2 < < y l , ~i � 1. Now, let a < b be such that X c (a,b).

Construct open intervals (a
~,8) 

as follows (observing that X — I is

a compact subset of X): set a1 — max{a, inax(x: x c I I and x < y1}}

and — min{b , min{x: x C X — I and x >  y1}}. If > y~ stop this

process with the interval (a1,81). If 8 i < y ,  then there exists an

integer i
~
, 1 � 

~l ~ p-I such that y~ < < y~, +l~ 
In this case,

1

set 
~2 — max{x: x c X I and x < Y11+11 and

82 — min{b , min{x: x £ X I and x > y1~~1l}. Note that we must

have a2 ~~~~. 
c X I and < 

~
‘i1+l Once again, if >

stop this process. If 82 < y ,  we continue and , since p is finite,

this construction mus t end after, say v � p steps, giving v pairwise

disjoint open intervals (a 1,8 i) , . . . , (a
~ ,8~

) where

a~~~ai < 8 ~.~~~a2 < $ 2 � ... � a~~< 8 �b , (a~~8~) n I ~~~0 and

(a~~B~) n (X ’  I) — 0 for i — l,...,v. For convenience, let us assume

that (ar,Br) n I — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

for r — 1,...,v with 
~o — 0.

-

~

• -

~

-

~

-— ~~~~~~~~~--~~~~~ ~~~~-~~~~~~~~~~~~~~ --— .~~~~ --~~ • -~~-~~~~~~~ - -- ~--- - - •
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Now we will construct a new set of points I’ where I’ n X — 0 as

follows: if (ar,Br) is such that a < ar , 8r 
< b and

(a 8 ) fl 1 — 
~~~~~~ +l’~

••’
~i ~ 

consists of an odd number of points, —

th:n :et y
~ ~

(8r + and require that yj C I’. Therefore, I’

can consist of at most v points. For convenience, set
= 

I’ — ~~~~~~~~~~~~~ y � v , if I’ ~ 0. Also, in this case, note that

q*(x) must vanish at y
1 ~~~~~~~~ 

and q*(a~) > 0, q~(8,,) > 0 both
r—l r

hold implying that q* must have either one y~, ir_l+l � j ~ 1r as a

zero of even order (at least two) or have at least one more simple zero

in (ar,ør). That is, q* must have at least — 1r—1 + 1 zerosin

(a
~
,B
~
). Set

(1 I
- I I1 (y~~—x) , I~~’0

u —I.
• (2)

, l
i
m o .

Next, we shall construct a sequence of polynomials

corresponding to each interval (ai,8i) ,  i — l,...,v. First, set

j—l p -

- w - f(y )/N U (y - y~
) II (y

1 
- y )Iv(y )I (3)j  i—l i—j+ l

0 p
for j  — l,...,~ where TI = TI — 1 and note that + 0 as N + ~~~- 1 p+1. 

- -  ----
~~~~~

-- • •“
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Let us first consider the interval (cz1,81) where

(a1,81) n I — ~~~~~~~~~~ 1 , 1 � i
1 

� p .  The precise form of will
1

depend upon the structure of (a 1,8 1) although , in all cases , the poly-

nomials will have certain essential properties. Therefore, we must

consider cases .

Case 1. = a, i1 
= 2m + 1, in ~ 0. Note that in this case we

must have 8~ < b since card(X) � n + 2. Furthermore, this interval

gives no contribution to I ’ . Set

0~(x) _
~ f l

0
[ ( ~~2~+1 

— w2j+l) —x] fl [(~2~ + w2j) 
— xl where W

j  
is

defined by (3). Now , since -‘ 0 as N -‘. for all i and

a — a1 < y1 < “• < y~ < 
~~~~~~ 

we can select an N
1 

such that N � N
1

implies that

a < y1 — w1 < y. < y2 < y2 + (1)
2 < < y1 —l < 

~1 —l + w1 —l ~i 
— 
~i 

< y
l1 1 1 1 1

Thus, for N � N1, we have that 0~(x) is positive at ~~~~~~~~~ and

0~(x) > 0 for x � 
~l 

(which implies that O~(x)  > 0 for all x c  X).

Let p(s) denote the number of zeros of q*(x) in the interval

(a5,85),  s — 1,...,~ where we count a zero of order p as p zeros .

Then we have 30~ � p(l )  in (a1,81).  Also , setting Cj  — y1 
— for

i odd and e~ — y1 + for I even and noting that c~ + y1 as N 9

we have, for 1 � I 
~ ~l’ 

that
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I—i i
i

1~~O~ (y~) — l/N(—1)t~~w~ TI (c — y
1
) TI (c — y

1)j1 j i+l

1—1 p
11 (y

1 
— ‘4 ) ~~ (‘ 4 

— y1)Iv(y1)I
— 

j_
~~

i—I. i
i

f (y
1
) II (y

1 
— c )  TI (t

j  
— Y1)j—l j=i+l

Now, using (2) and (3) , we have

U Y
l/N0~(y1) 

-
~ f (y~)~~ TI (y 4 — y1

) IT (y ’ — y1
) as N -‘ — , 1 � j � i~ .- 

j=i~+l -‘ j—l

Also, for x c X satisfying x > y
1 , we have (since I1 Is assumed
1

I
l 1

1 i
l

odd) that O~(x) = — IT Cc . — x) — IT (x — -‘ IT Cx — y4) as N ~‘
j=l ~ j—l -~ f—I.

Case 2. a1 — a, 
~l 

= 2m, in � 1. Once again we have Bi < b and

n I’ 0. Set

m-l m
0~(x) — TI [(y 2~~ 1 + 

~2j+l~ 
— xl TI [(y 2j — W 2j ) — x ] .  Again it follows

j—O i—i

that we can select an N
1 such that N � N

1 implies that O~(y1) > 0,

1 � I � i~ , 0~(x)  > 0 for x � Bi (which implies that Ø~ (x) > 0 for

all x c I) and aO~ � p(l). Setting n1 — + for I odd and

— y1 — for I even , we have fo r Yj~ 1 � I � i
~
, that

I
~

L •- - -— • -- - - -
~~~

--
~~~~~~

— ---—— -•-~~~~~
..

~~~~~~~~ .•‘•-~~~~
- - • “  

~~~~~~~~
-
~~~~~~ - - - -- - -~~~~~- --
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l~~O~ (y
1
) - 1/N(_l)1

~~
w
i 

fl (f l
u 

- 
~~~~~~ 

Again , using (2) and (3) we have
i—i
.1 ~i

(since i~ is even) that l/N0~ (y 1) + f(y )~~ IT (y — y1) IT (y ’ — y1)1=j +1 1—1

as N -~ — . Also , for x £ X with x > y1 , we have that
1

1
1 i

i i
i

O~(x) = U (n — x) = U Cx — ri ,) IT (x — y4) as N -‘ ~~. Note that
j=l j=l ~ 1~~1

has the same limit, as N -
~ , for each of these two cases.

Next we consider the case where a1 > a. In this case, the contri-

bution of is identical with that of for (a ,8 ) ,  r = 2,...,v.

NThus, we consider the construction of 0r for 
~~r’

8r~ 
where

r — l,...,v. Here we must consider an additional four cases . For

convenience set Z = 1r l  and k 1r — 1r—l so that

(a
r,Br) fl I — {y

1 ~~~~~~~~~~~~~ ~ 
=

r—l r

Case 3. a
r
> a , 8 < b , r = 1 ,...,v ; k = 2 in + 1 , m � O .  Note that

in this case y~ ~~ 
c I’ and p(r) � 2m + 2. Set

• 
0~(x) - 

~~~~ 
- x ) f l [ ( 7

L+2~+l 
+ w L+2j+1

) - x ] f l ( ( Y &+2j - w
~+2j ) - x] .  (4)

Once again, there exists an N such that f or N ~ N we haver r

_ _ _ _ _  -~~~~~~ • -
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I) 0~(x) > 0 , x � a
r

ii) ØN ( )  > 0, 1 2. + l,...,~L + k

iii) 0~(x)  > 0, x 
~ 
8r

• (Note that iii) follows from the even number of linear factors in (4),

all of which are negative). Therefore, ON(x) > 0 for all x c X.

Setting p1 = + for I odd and = — for i

even, we have for x ~ ar

Ik r
O~ (x) = U (p , — x) (y +k — x) -‘~ IT (y, — x) ( y  — x) as N - ‘— .

il  ji +1 ~ r
A- r—l

Similarly for x � 8r (since k is odd)

Ik r• 0~(x) = U (p
1 

— x) (y
~+k — x) -‘ TI (x - y ) (x  - y~ ) as N -~

1=1 ji +1 r
r—l

Finally , for y1, 
~r l  + 1 � I � 1r’ we have, using (2) and (3)

(assuming Yj = y~ for some 8, 1 � 8 � r) ,

i—i +1 1”1r—l~~l/N0~ (y1) = 1/M_l) 
r—1 w~ TI (p 4 — y1) ~ (p~1 — yj) (y

~• 
— Y1)

j—l jmi_ir_1+l ‘ r

i— I. p
II (y1 — y )  II (y — y1) TI (y ’ — y1)• j—l 1=1+1 j=l

— 4.

i—i —1

f (y ) ~j (y - ) ( - y ) ( ’ - )
j—l ~~j—i—i +1 0

r—1

4, 

_~~~~~s- i~~~~~~- - -—
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i - ir p 0—1 .
4 f(y1)~~ IT (y~ — y )  TI (y

1 
— y~) 11 (y~ — y )  II (y’ — y~)j—l ~ ~r+~ j 1  j—0+l

as N+ .

- ~
- Case ~~• > a, 8r 

< b, k = 2m, in � 1. 
•
Note that in this case

(ar,B) gives no contribution to I’ . Set

ON (x) = U [(y
2.+21+1 + w

~+2J+1
) - x] fl [(y 2.~21 - W2.+21) - x] •

• 1 As before , there exists an N
r such that N � N

r implies O~ (x) > 0

for all x c X. Using p~ as defined In Case 3, we have , for x � a

Ik r
0~(x) — IT (P~ — x) -‘- II (Yj  — x) as N + . and for x �- I - j—i jir_l i

0~(x) — II (~~ - x) -‘ II (x — y )  as N + . Finally, for y1,j=l jmi,, 1+1

1r—1 + 1 
� I � 

~r ’ we have, using (2) and (3).

i—i +1 ~~~r—l ’ 4,
-~ 1fra~(s) — Øn—l) r—1 

~ (~ — ,~ ) ~i ~~ —

- - j—l

- 1—1 p
- • II (y1 — y )  IT (y — y1) II ~ 

— y11
- j—l j—i+1 _1_i- - — 9.• i—i —lr—l

f(y ~) IT (y1 — p 4) U • (p
1 

— y~)
1—1 J
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Ir—l p y
II (y 1 — y )  II (y

1 
— y1) II ly ’ — y1~ as N + .

j—l j—i +1 j—1
r

Case 5. a > a ,B — b , i — I  — k — 2 m + l , m � O ,  Note thatr r r r—l

in this case r v, iv 
— U and (a

~
,8) gives no contribution to I’.

Set ØN() — 

~~~~~~~ 

£+2j+1 + w
2.+21+1

) — x] ll [(y
2.~21 

- W
2.+21

) — xl where

is defined by (3). As before, there exists an such that N �

implies ?(x) > 0 for all x c X. Using p
1 as def ined in Case 3, we

N k p
have for x � a , 0 (x) = TI (p4 — x) + IT (y1 — x) as N -3 — .

‘I V 
1=1 +1

v—i

Also, for y1, 1
r—l 

+ 1 � I � p

1ft0~ (y1) 
~~(~ l)~~~~~~~~w~ 

j~~
(p
J 

- y1) ~ f( y1)~~R (y1 - ~1)
~~ IY~ - y1I

as N -. — using the same argument as before.

Case 6. > a , Br — b , (r = “~ = Ii) , ~ 
— 1

r—l = k — 2m, in � 1.

Again, the interval (a ,8) gives no contribution to I’. Set

0
~

(x) — fl [(y 2.42 1~ 1 + w2.+21+1) — xl fl [(y 2.~ 21 
- w 2.~ 21

) — x l .  As before,

N Nwe have 0 (x) > 0 for all x c X. 0 (x) + TI (y~ — x) as N +
V 

~
—
~~

-r ~
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for x � a
~~. For 

~1’ ~v—l + 1 � i �

i

i/~O~ (y~) -
~~ f (y~)~~ JI (Yj — y

1
) II ~ — y1I . Recalling that p (s ) is

j— l j — l

the number of zeros of q*(x) in the interval (ci ,8 ) ,  s —

we observe that In Cases 4, 5 and 6, ~0~ (x) � p (r) . Therefore, we set

- 

PN (x) = 

- 

TI O
N(x) , where O

N
(x) is constructed with respect to the

= s—i

interval (a , 8 ) ,  s — 1,..., v as described above (depending upon

(a , B ) ). Since ~0~ (s) � p (s) , these intervals (by construction) are

pairwise disjoint and ~q*~ I~ = 1, we have that � 3q*• Also,

there exists an N such that N � N* imp lIes that 0~ (x) > 0 for all

— K ~ £ X, s — l,...,v so that 
~N f or N � N*. Furthermore , for

(a1’ P-
X C X — 1 ,

- 

ii~ 
1 

= (urn -~~~ I IT lint 1

N-” NPN (x) 
‘N-” N J g—l N-”' O~ (x)

— (i~~~!\( ~ — x l 
~~ 

Iy~ 
— x i )

1 
— 0 since the

• 
- N-” I i—i 1—1

quantity in parentheses on the right Is not equal to zero. Also, since

I) = c > 0 , we have that the above convergence is uniform in

I — I. Finally, for y
1 

c I (say y~ e (a
~

,B
~

)) we have that
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- 
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Thus, by 

16

• selecting N � N* suff iciently large so that l f(~1) — 

Np~~y~)l < A ,

I — l,... ,p and 
N p ( x) ’ < A holds for all x £ X — I we have that

I I ~ 
— j~— ll ,~ < A (recall that l f~x) I � A on X I), which is our

desired contradiction. Hence, we must have c* > 0. Thus, q*(x) > 0

• C *for all x c X. Furthermore , —
~~~ + ~~~

— uniformly in X as v +“ so

1 c* 1that -

~~~ 

— —i- = lint -r — -a-- = A This, in turn implies that
q v

• p* — q*/c* is our desired best approximation from K.

Finally , we would like to close this section with results on characterization

and uniqueness. Using the standard argument [17) for alternation of best rational

approximants on an interval we have :

ThEOREM 2. Let f c C.(X) ~~~~~~~~~~~~~ where X is a compact

subset of the real line. Let n � 0 be a given integer and set

— {l/p(x): p c II~, p(x) > 0, for all x C Xi. Assume 1/f I R~(X).

Then a necessary ~~~ sufficient condition that l/p* is a best approxi-

mation to i/f on I - from R~(X) is that the error curve

e*(l/f) — 1/f — i/p* alternate at least n + 1 times.

I.. • .  -- •__~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ —~~~~ --_- - —- ~~— -~~ — - - _~- -~~ - •  —~~- -• - -— — ------ - -- --— - - • — - -
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It should be remarked that this theorem is also valid for R~(X)

(r p/q: p q c IT~, q > 0 on X and l l q D  =

-inu u7i~~~~iii 1.1 It-- ~

On the question of uniqueness, we can simply quote the results we

desire front work of Cheney and Loeb [6 , 13]. Indeed , they actually
prove that whenever existence holds for R (X) then so does uniqueness

and strong uniqueness .

THEOREM 3. [16, p. 94—95]. Let f c C(X) satisfy f(x)  > 0 for
all x £ X. Then there exists a unique best ~pproximation l/p* 

~~ 1/f
from R~(X). Furthermore, there exists a positive constant y — y(f)

• such that for each lip £ R~(X) (strong uniqueness)

1 1  1 1  1 1
� 

~~1 ~~~~~~
--

~~~ •

_ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  --
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3. CO }WUTATION 
-

In this section , we wish to describe three possible algorIthms for

computing best approximations to 1/f, f(x) > 0 for all x c X, from

R~(X). The algorithms are Remes, differential correction and a hybrid

algorithm which is a combination of the first two. In a future paper

we shall report on numerical experiments involving these algorithms .

In what follows, we shall assume X is a finite set.

Remes algorithm has been widely studied and appears of ten in the

literature . Two explicit papers where the Remes algorithm is proposed

for calculating best rational approximations are in Cody, Fraser and

Hart (7], and Ralston (15]. The Rentes algorithm consists of two main

operations :

i) the solution of a nonlinear system

• and Ii) the exchange of a certain set of points .

It is known that in general the nonlinear system may have many solutions

(and sometimes none of which belong to R~(X) ) (16, p. 104], [9]. Thus

Remes could fail to run due to its inability to either solve this system

or by returning a -solution to this system which is not in the class

R~(X~. (A second problem with Remes algorithm will be mentioned later.) Even if

the algorithm is able to solve this system at each step with a solution in R0( X ) ,

convergence can only be guaranteed if the algorithm was initialized with a sufficiently

“good” starting approximation (for the case X is an interval). In a recent study by Lee

and Roberts [12], it is observed that the Remes algorithm is very fast when it

converges, but may f all to converge. Also , observe that in the theory

-

~

-

~ 

-- --
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• we are considering here every function being approximated Is normal in the

usual sense.

The differential correction algorithm was originally introduced by

• Cheney and Loeb [5]. This algorithm was shown to have very desirable

convergence properties by Barrodale , Powell and Roberts in [1] and a

Fortran listing of it can be found in Ill]. In the setting considered

here this particular algorithm possesses guaranteed (quadratic)

convergence to the desired best approximation in R0(X). However, in

practice , if X is large it is sometimes necessary to solve this

problem on a subset of X and then initialize the full problem with

this solution. This is due to the fact that this method involves a

linear programming subroutine which is sometimes numerically difficult

to solve without a good initialization. Also, due to the inclusion of

this linear programming subroutine, this algorithm is quite slow (some

19 times slower than Remes (when Reiues converges) in tests done in [12]).

The final algorithm that we wish to mention f or this problem is a

hybrid of the above two. Precisely, we propose to replace the step of

the Remes algorithm where a nonlinear system is solved to get a best

approximation on a reference set (smaller than X) with the differential

correction algorithm applied to this reference set to give the desired

best approximation on this set. This method will eliminate the problems

of the Remes algorithm associated with the solution of the nonlinear

system in that a best approximation on the reference set (which is

positive on the reference set) will be found. However, there is still

no guarantee that the best approximation on a given reference set found 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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by the differential correction algorithm will actually belong to R~(X )

(i.e., it may fail to be positive (or defined) on some points of X not

in the reference set) . In fact, we have encountered such examples in

testing our hybrid algorithm and these examples have given rise to a second

problem in the Remes algorithm. Namely, the exchange procedure cycled .

Thus, it is also necessary to modify the exchange procedure. At

present we are testing two modified algorithms. In order to describe these

modifications, let us assume that we are at the k—th step of the iteration

and suppose that the best approximation rk on the ref erence set Xk (n + 2

point s from X) has been found by the differential correction algorithm.

The first modified exchange algorithm is as follows. Perform a

multiple exchange in the usual manner only among those points of X where

rk(x )  > 0 holds. If r
k is not the best approximation on the set of points

where it is positive then a new reference set is obtained and the algorithm

proceeds to the differential correction phase to find the best approximation

on this new reference set. If r
k is the best approximatior on the set of points

where it is positive then terminate the algorithm if rk(x )  > 0 for all x c X

(rk is the desired best approximation on X) or adjoin to the set Xk, y c X

where rk
(y ) = min{rk(x): x e X}. ilote that r~(y) < 0 must hold in this case.

Set X~~1 (y } Li Xk and apply the differential correction algorithm to this

set of n + 3 points finding the best approximation rk+l on it. Next, reduce

to a subset of n + 2 points, ~~~~ where Xk+l is chosen so that alternation

holds on Xk.pl. Now repeat the exchange procedure on X
k÷l 

with respect to rk÷l.

The second modified exchange algorithm is basically a reordering of the above

one. In particular, if rk the best approximation on Xk is positive on all of X

then we proceed with a multiple exchange in the usual manner. If rk is not 
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positive on all of X then we adjoin y c X to X~~precisely . as above , getting

and proceed as in the above algorithm .

One can prove that in both of these modified algorithms, cycling cannot

occur and that global convergence holds for X f inite (i .e . ,  error of approximation

on successive reference sets strictly increases) . In a future paper we shall

• give a detailed description of these two algor ithms and report on the results

of our numerical testing of them. Also, we are studying the extension of these

• ideas to- R~(X) and will also report on this at that time.

• 
aJ%.w4LJ

~~~~~~~~~
• 

-

As1~~ w1s~ge:~ Th.~ second author wishes to acknowledge a valuable personal
conversation with Professor Dietrich Braess with regard to
this problem .
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